多层介质膜的体吸收与界面吸收研究

吴周令 范正修

(中国科学院上海光学精密机械研究所)

提 要

以 TiO₂/SiO₂ 膜系为例, 报道了用横向光热偏转技术研究多层介质膜体、面吸收的实验方法与实验结果。文中对实验结果作了分析讨论并把它与文献报道的光声法作了比较。 关键词: 薄膜体、面吸收; 光热偏转技术。

一、引 言

光学薄膜的吸收损耗由体吸收与界面吸收两大部分组成。测量中正确区分这两部分吸收,有助于认清光学薄膜的损耗机理,从而提高薄膜光学质量^[1,9]。

对于单层介质膜,利用楔板状样品,体、面吸收的区分可通过激光量热法^[3,4]、光声法^[5,6]或光热偏转技术^[7]来实现。对于多层介质膜,问题较为复杂,目前可见的少量报道,仅限于光声法^[8~10]。

本文提出用横向光热偏转技术^[11~14]研究多层介质膜的体、面吸收,以TiO₂/SiO₂膜系 为例,报道了有关实验方法与实验结果。文中对实验结果作了分析讨论并把它与光声法进 行了比较。

二、实验方法与理论分析

1. 多层介质膜总吸收的测量

多层介质膜总吸收的测量采用横向光热偏转技术,其基本原理是:多层介质膜在较低 调制频率下层所谓热薄试样^[13](l₀<μ_s<μ_a,式中 l₀——样品厚度,μ_s——样品热扩散长度, μ_a——样品光吸吸收长度),在这种情况下,光热偏转信号 S 满足^[13]:

$$S = OA$$
, (1)

式中: *A*——被测光学薄膜总吸收; *O*——决定于实验条件的常数。具体的测量方法及实验 装置文献[14]中已作详细介绍, 这里不再赘述。

2. 多层介质膜总吸收与膜层体、面吸收的关系

考察图1所示的多层介质膜系,有

$$A = A_{V} + A_{AF} + A_{HL} + A_{LH} + A_{FS} + A_{S}, \qquad (2)$$

式中: Av 是膜层体内吸收, AAP 是空气-薄膜界面吸收, AAH 是高折射率材料-低折射率材

收稿日期: 1988年7月20日; 收到修改稿日期: 1988年11月7日

Fig. 1 Schematic diagram of the dielectric multilayer sample, consisting of 2N+1 layers deposited on substrate G

料界面吸收, ALH 是低折射率材料-高折射率材料界面吸收, AFS 是薄膜-基板界面吸收, AS 是基板吸收。

为简化分析起见,设该膜系为奇数层 λ₀/4 多层介质高反膜,即有

$$l_1 = l_3 = \dots = l_{2N+1} = \frac{1}{n_H} \cdot \frac{\lambda_0}{4}, \quad l_2 = l_4 = \dots = l_{2N} = \frac{1}{n_L} \cdot \frac{\lambda_0}{4},$$

其中 *k*(*i*=1, 2, …, 2*N*+1)为第 *i* 层膜的几何厚度。当基板无吸收且 *N* 飞够大时,式(2)可简化为^[1]

$$A = A_V + A_{HLo} \tag{3}$$

且有

$$A_{\mathbf{v}} = \frac{\lambda_0}{2} (\alpha_L + \alpha_H) \frac{1}{n_H^2 - n_L^2}, \qquad (4)$$

$$A_{HL} = 4a_{HL} \frac{1}{n_{H}^2 - n_{L}^2},$$
 (5)

式中: *a_L*——低折射率膜的体吸收系数; *a_H*——高折射率膜的体吸收系数; *a_{HL}*——高折射率 材料~低折射率材料界面比吸收。

实验中为了从总吸收 A 的测量结果中获得体、面吸收方面的信息, 必须适当选择膜系 中高、低折射率膜层的厚度¹⁰³。为此, 我们假设图 1 所示膜系中单层高、低折射率膜层的厚 度分别为

$$n_H l_H = (2p+1) \frac{\lambda_0}{4}, \ n_L l_L = (2q+1) \frac{\lambda_0}{4}, \ p_q = 1, 2,$$
 (6)

则(3)~(5)式演变为

$$A(q, p) = \frac{4a_{HL}}{n_H^2 - n_L^2} + \frac{(2q+1)\lambda_0}{2(n_H^2 - n_L^2)} \alpha_L + \frac{(2p+1)\lambda_0}{2(n_H^2 - n_L^2)} \alpha_H$$

= $A_{HL} + A_V(q) + A_V(p)$
= $A_{HL} + A_V(q, p)$, (7)

式中: A(q, p) ——对应于参数(q, p)的膜层总吸收; $A_V(q, p)$ ——对应于参数(q, p)的膜 层体吸收。(7)式是一个三元方程。理论上讲只要测出三个不同(q, p) 值对应的 A(q, p), 即可求得 a_{HL} , α_L 及 α_H 。实际测量中为提高精度,可选取 n(n>3)个不同的(q, p)值, 然后 测出相应的 A(q, p), 由测得结果用曲线拟合法求出 a_{HL} , α_L 及 α_H ; 也可多取几个(q, p)值, 然后分组由(7)式求得所需结果,再取平均值。

三、实验结果及讨论

表1列出了被测 TiO₂/SiO₂ 膜系的设计参数, 沉积工艺及相应总吸收的测量结果。

如果把这些结果用三维图形表示,例如图2所示。图2中:(1) A、B、C(A、E,F)三点 近似在同一直线上,表明:在低(高)折射率膜层厚度一定时,A(q,p)与高(低)折射率膜层厚

design	$A(q, p) \times 10^{+}$	refractive index	deposition method
A/(HL) ³ H/G	$\begin{array}{c} q = 0 \\ p = 0 \end{array} \right\} \ 6.9 \pm 0.6 \\ \end{array}$	$n_H = 2.40$ $n_L = 1.46$	electron beam evaporation deposition pressure (2~3)×10 ⁻⁵ Torr
A/(3HL)³3 H/G	$\left(\begin{array}{c} q=0\\ p=1 \end{array}\right)$ 10.0±1.4		
A /(H3 L) ⁸ H/G	$\left \begin{array}{c} q=1\\ p=0 \end{array} \right $ 7.1±0.8		
A/(3H3L) ³ 3H/G	$\left\{\begin{array}{c} q=1\\ p=1 \end{array}\right\}$ 10.3±1.5		
A/(5HL) ^{\$} 5H/G	$\binom{q=0}{p=2}$ 13.2±2.1		
A /(H5L) ³ H/G	$\left\{\begin{array}{c} q=2\\ p=0 \end{array}\right\}$ 7.3±0.9		

Fig. 2 Measured total absorption $\mathcal{A}(p, q)$ of TiO₂/SiO₂ coatings vs. the optical thickness of their high and low refracting components at $\lambda = \lambda_0 = 6328 \text{ \AA}$

度成正比。

(2) 直线 $A_B_C(A_E_F)$ 的斜率是与 $\alpha_H(\alpha_L)$ 成 正比的量,反映着 $\alpha_H(\alpha_L)$ 的大小。

(3) 直线 DA 在纵坐标轴上的截距是与 a_{HL} 成比例的量,表征着 a_{HL} 的大小。

表2列出了对表1数据的处理结果及其与文献报 道结果(光声法)^{口03}的比较。

由表中可以看出:

1. 对所研究的 TiO₂/SiO₂ 膜系, 有:

(1) α_H≫α_L,即高折射率介质体吸收是膜系总的体吸收的主要来源;

(2) A_{HL}≳A_V(q, p), 说明界面吸收是膜系总吸收有着重要贡献。

λ=λ₀=6328 A 因此,在 Ti O₂/SiO₂ 膜系的设计与制造过程中,要 降低其吸收损耗,关键在于界面吸收与高折射率介质体吸收的减小。

2. 本文处理数据时未考虑所谓"膜内界面"(intra-interface)^[15]对薄膜总吸收的影响, 但其结果与光声法在δ=0.75时的结果^[10]符合较好,说明:对于本文所测样品,由于"膜 内界面"而引入的附加吸收是可以忽略的力量。这个结论与我们具体镀膜工艺是相符 的——在我们的样品制备过程中,高、低折射率膜层厚度的增长都是连续控制的,故所谓"膜 内界面"实际上并不存在。

四、结束语

我们通过适当选取高、低折射率膜层的厚度,用高灵敏度的横向光热偏转技术详细地研

多层介质膜的体吸收与界面吸收研究

Do Do motore		previous	data ^[10]
parameter	our results	δ=0*	$\delta = 0.75^{*}$
$\alpha_L(\text{cm}^{-1})$	$1.3 {\pm} 0.2$	1.1 ± 2	1.1 ± 2
$\boldsymbol{a}_{H}(\mathrm{cm}^{-1})$	18 ± 3.6	52 ± 4	23 ± 10
$a_{HL} imes 10^4$	4.7±0.5	1.1 ± 0.3	$2.0 {\pm} 0.6$
$A(0, 0) \times 10^4$	6.9±0.6		$6.0{\pm}0.6$
$A_{HL} \times 10^4$	5.2 ± 0.5		$4.3{\pm}0.4$
$A_V(0, 0) \times 10^4$	1.7 ± 0.3		1.7 ± 0.2
$A_{V}(0, 1) \times 10^{4}$	$4.8 {\pm} 0.9$		
$A_{V}(1, 0) \times 10^{4}$	$1.9 {\pm} 0.3$		
$A_V(1, 1) \times 10^4$	$5.1{\pm}1.0$		×
$A_{V}(0, 2) \times 10^{4}$	$8.0 {\pm} 1.6$		
$A_{\nu}(2, 0) \times 10^4$	2.1 ± 0.4		
$A_{HL}/A_V(0, 0)$	3.1 ± 0.8		2.5±0.6
$A_{HL}/A_V(0, 1)$	1.1±0.3		
$A_{HL}/A_V(1,0)$	$2.7 {\pm} 0.7$		
$A_{HL}/A_V(1, 1)$	1.0 ± 0.3		
$A_{HL}/A_V(0.2)$	$0.7 {\pm} 0.2$		
$A_{HIJ}'A_V(2, 0)$	$2.5 {\pm} 0.7$		

Table 2 Calculated a_L, a_H, a_{HL} and $A_{HL}/A_V(q, p)$ of the TiO₂/SiO₂ coatings in comparison with previous data

* $\delta = 0$ —taking no account of the influence of "intra-interface"^[15].

 $\delta = 0.75$ —taking into account of the influence of "intra-interface".

究了TiO/SiO₂膜系的体吸收与界面吸收,得出了一些有意义的结论。这些结论有助于进一步认识光学薄膜的损耗及激光损伤机理。

作者感谢施柏煊、何捷、胡凯、苏星等同志的有益帮助和讨论。

参考文献

- [1] H. E. Bennet et al.; J. O.S. A., 1980, 70, No. 3 (Mar), 268.
- [2] A. Kalb; Opt. News, 1986, 12, No. 8 (Aug), 13.
- [3] J. Ebert; J. O. S. A., 1981, 71, No. 12 (Dec), 1553.
- [4] P. A. Temple; Opt. Eng., 1984, 23, No. 2 (May), 326.
- [5] N. C. Fernelius et al.; Appl. Surf. Sci., 1981, 7, No. 1 (Jan), 32.
- [6] F. Coniand et al.; Thin Solid Films, 1985, 130, No. 12 (Aug), 29.
- [7] 吴周令等; «光学学报», 1989, 待发表。
- [8] J. Fujii et al.; Ja pan. J. A. P., 1981, 20, (Feb), 361.
- [9] M. Morita; Japan. J. A. P., 1981, 20, (May), 835.
- [10] H. G. Walther et al.; Thin Solid Films, 1986, 142, No. 1 (Aug), 27.
- [11] W. C. Jackson et al.; Appl. Opt., 1981, 20, No. 8 (Apr), 1333.
- [12] J. C. Murphy et al.; J. Appl. Phys., 1980, 51, No. 9 (Sep), 4580.
- [13] N. M. Amer et al.; «Semiconductors and Semimetals», 21 (B), (ed by Panukve., 1985), 83.
- [14] 吴周令等; 《光学学报》, 1988, 8, No. 11 (Nov), 1044.
- [15] P. Roche et al.; J. O. S. A., 1984, 1, No. (Oct), 1032.

Measurement of bulk and interface absorption in Multilayer coatings

WU ZHOULING AND FAN ZHONGXIU (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 20 July 1988; revised 7 November 1988)

Abstract

By an appropriate variation in the thickness of the high and low refracting components, a the bulk and interface absorption of dielectric TiO_2/SiO_2 multilayer stacks was investigated using transverse photothermal deflection technique. The results are in good agreement with those proviously reported using photoacoustic method.

Key words: volume and interface absorption of multilayer coatings; photothermal deflection technique.

